LATTICE QUANTUM FINITE ELEMENTS (QFE) FOR CONFORMAL FIELD THEORY

Rich Brower, Boston University

RBRC Workshop on Lattice Gauge Theories 2016 — March 10

Our Quantum Finite Element (QFE) method is at the intersection of two traditions

I. CLASSICAL FEM# for PDEs on smooth Riemann Manifolds

FEM: Alexander Hrennikoff (1941) Richard Courant (1943)*

Discrete Exterior Calculus* (de Rahm Complex, Whitney, etc., etc.),

II. QUANTUM FEILDS on random Lattices.

Regge Calculus T. Regge, Nuovo Cimento 19 (1961) 558.*

Random Lattices: N. H. Christ, R. Friedberg, and T. D. Lee, Nucl. Phys. B 202, 89 (1982).* Fermion Fields on a Random Lattice: R. Friedberg, T.D.Lee and Hai-Cang Ren Prog. of Th. Physics 86 (1986).

Topology/Chirality 'tHooft, Leuscher et al for QCD

Google: "Finite Element Method" ==> 25,500,000 results (0.46 seconds)

MOTIVATION* RADIAL QUANTIZATION OF CONFORMAL FIELD THEORY

On lattice scales exponentially

$$H = P_0 \text{ in } t \implies D \text{ in } \tau = \log(r)$$

$$1 < t < aL \implies 1 < \tau = log(r) < L$$

* See "Lattice Radial Quantization: 3D Ising" by Brower, Fleming and Neuberger Phys.Lett. B721 (2013) 299-305.

Potential Application: (1) BSM composite Higgs Model Building (2) AdS/CFT weakstrong duality, (3) Critical Phenomena in general, etc

CFT OPE expansion and Conformal Bootstap

$$\langle \phi(x_1)\phi(x_2)\rangle = C \frac{1}{|x_1 - x_2|^{2\Delta}}$$

Only "tree" diagrams!

"partial waves" exp: sum

over conformal blocks

$$\mathcal{O}_i(x_1)\mathcal{O}_j(x_2) = \sum_k \frac{f_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}} \mathcal{O}_k(0)$$

Exact 2 and 3 correlators

(i.e. Data: spectra + couplings to conformal blocks)

CFT Bootstrap: OPE & factorization completely fixed the theory

NEQUALITIES FROM BOOTSTRAP*

• *"Solving the 3D Ising Model with the Conformal Bootstrap" (El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin and Vichi) arXiv:1203.6064v1v [hep-th] (2012)

PLACING QUANTUM FIELDS ON A RIEMANN SIMPLICIAL COMPLEX

Scalar Theory: Classical FEM Limit

Dirac Theory: Lattice Spin Connection

Renormalization: 2D Test of Counter Terms

• Future: D > 2 & Gauge Theories

SCALAR FIELD

Replace Ising Model by phi 4th

$$\mathcal{L}(x) = -\frac{1}{2}(\nabla\phi)^2 + \lambda(\phi^2 - \mu^2/2\lambda)^2$$

TEST CFT: PHI 4TH WILSON-FISHER FIXED POINT IN 3D.

$$L = \int d^3x \left[\sqrt{g} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \lambda \sqrt{g} (\phi^2 - \mu^2 / 2\lambda)^2 \right]$$

Simplicial Complex: Lattice vs dual Lattice. Discrete Exterior Calculus

- 1. First replace the smooth Riemann manifold (\mathcal{M}, g) by an approximating piecewise flat manifold $(\mathcal{M}_{\sigma}, g_{\sigma})$ composed of elementary simplices.
- 2. Second expand the field, $\phi(x)$, in a finite element basis on each simplex: $\phi(x) \simeq W^{i}(x)\phi_{i}$.

FEM geometry on edges.

The I's fix metric and the local co-ordinates (diffeomorphism) and the angles the intrinsic curvature.

REGGE CALCULUS FORMULATION

Delaunay Link Area: $A_d = h_1 l_1$

$$FEM: A_d rac{(\phi_2 - \phi_3)^2}{l_1^2}$$

DISCRETE EXTERIOR CALCULUS or CHRIST FRIEBERG & LEE

^{*} H. Hamber, S. Liu, Feynman rules for simplicial gravity, NP B475 (1996)

Order s Refined Triangulated Icosahedron

I = 0 (A),1 (T1), 2 (H) are irreducible 120 Iscosahedral subgroup of O(3)

FEM FIXES THE HUGE SPECTRAL DEFECTS OF THE LAPLACIAN ON THE SPHERE

For s = 8 first (l+1)*(l+1) = 64 eigenvalues

BEFORE (K = I)

AFTER (FEM K's)

SPECTRUM OF FE LAPLACIAN ON A SPHERE

Fit
$$l + 1.00012 l^2 - 13.428110^{-6} l^3 - 5.5724410^{-6} l^4$$

DIRAC FIELD ON REIMANN MANIFOLD

OFEM DIRAC EQUATION: MUCH HARDER

$$S = \frac{1}{2} \int d^D x \sqrt{g} \bar{\psi} [\mathbf{e}^{\mu} (\partial_{\mu} - \frac{i}{4} \boldsymbol{\omega}_{\mu}(x)) + m] \psi(x)$$

 $\mathbf{e}^{\mu}(x) \equiv e_a^{\mu}(x)\gamma^a$ Verbein & Spin connection*

$$\omega_{\mu}(x) \equiv \omega_{\mu}^{ab}(x)\sigma_{ab}$$
 , $\sigma_{ab} = i[\gamma_a, \gamma_a]/2$

- (1) New spin structure "knows" about intrinsic geometry
- (2) Need to avoid simplex curvature singularities at sites.
- (3) Spinors rotations (Lorentz group) is double of O(D).

$$e^{i(\theta/2)\sigma_3/2} \to -1$$
 as $\theta \to 2\pi$

Must satisfy the tetrad postulate! $\omega_{\mu}^{ab} = \frac{1}{2} e^{\nu[a} (e_{\nu,\mu}^{b]} - e_{\mu,\nu}^{b]} + e^{b]\sigma} e_{\mu}^{c} e_{\nu c,\sigma})$

Must satisfy the tetrad postulate!
$$\omega_{\mu}^{ab} = \frac{1}{2}e^{\nu[a}(e_{\nu,\mu}^{b]} - e_{\mu,\nu}^{b]} + e^{b]\sigma}e_{\mu}^{c}e_{\nu c}$$

2D DIRACTRIAGULAR LATTICE

Torus: NAIVE

Torus: With Wilson Term

9 pts (orange) 16 pts (red) 25 pts(green) 100 pts (yellow)

Continuum Acton

$$S = \int d^D x \sqrt{g} \, \bar{\psi} [\mathbf{e}^{\mu} (\partial_{\mu} - i\boldsymbol{\omega}_{\mu}(x)) + m] \psi(x) \, ,$$

Tetrad Postulate

$$\partial_{\mu} \mathbf{e}^{\nu} + \Gamma^{\nu}_{\mu,\lambda} \mathbf{e}^{\lambda} = i[\boldsymbol{\omega}_{\mu}, \mathbf{e}^{\nu}] .$$

 $oldsymbol{D}_{\mu}$

Simplicial Lattice Action

$$S_{\sigma} = \frac{1}{2} \sum_{\langle ij \rangle} \frac{V_{ij}^{D}}{l_{ij}} (\bar{\psi}_{i} e_{a}^{(i)j} \gamma^{a} \Omega_{ij} \psi_{j} + \bar{\psi}_{j} e_{a}^{(j)i} \gamma^{a} \Omega_{ji} \psi_{i}) + \cdots$$

$$\psi_i \to \Lambda_i \psi$$
 , $\bar{\psi}_j \to \bar{\psi}_j \Lambda_j^{\dagger}$, $\mathbf{e}^{(i)j} \to \Lambda_i \mathbf{e}^{(i)j} \Lambda_i^{\dagger}$, $\Omega_{ij} \to \Lambda_i \Omega_{ij} \Lambda_j^{\dagger}$

WILSON/CLOVER TERM

$$[\mathbf{e}_a^{\mu}(\partial_{\mu} - i\boldsymbol{\omega}_{\mu})]^2 = rac{1}{\sqrt{g}} \boldsymbol{D}_{\mu} \sqrt{g} g^{\mu\nu} \boldsymbol{D}_{\nu} - rac{1}{2} \sigma^{ab} e_a^{\mu} e_b^{\nu} \boldsymbol{R}_{\mu\nu}$$

$$S_{Wilson} = \frac{r}{2} \sum_{\langle i,j \rangle} \frac{aV_{ij}}{l_{ij}^2} (\bar{\psi}_i - \bar{\psi}_j \Omega_{ji}) (\psi_i - \Omega_{ij} \psi_j)$$

Construction Procedure for Discrete Spin connection

(I) Assume Elements with Spherical Triangles (i,j,k) or boundaries give by geodesics on an 2D manifold

(Angles at each vertex add to 2 pi exactly)

(2) Calculate discrete "curl" around the triangle

$$\Omega_{ij}\Omega_{jk}\Omega_{ki} = e^{i(2\pi - \delta_{\triangle})\sigma_3/2}$$

(3) Fix
$$\Omega_{ij} \to \pm \Omega_{ij}$$
 so $\delta_{\triangle} \sim A_{ijk}/4\pi R$

Sphere: or any manifold with this topology has a unique lattice spin connection up to gauge Lorentz transformation on spinors

Torus: There are 4 solutions: (periodic/anti-periodic): Non-contractible loops.

Category Theory: A spin structure is a property shared between any simplicial complex and Riemann manifolds to which they correspond.

Lattice Spin Connection on simplicial lattice

The spin connection is gauge field whose curl gives the local curvature or deficit angle

Geodesics and Parallel Transport is easy on a Sphere: In general use a Relaxation to fix Gauge Field

$$S_{\Delta}^{(i)} \equiv e^{iA_{\Delta}^{\mu\nu}} \mathbf{R}_{\mu\nu}(i) \quad \leftrightarrow \quad \Omega_{\Delta_{ijk}}^{(i)} \equiv \Omega_{ij}\Omega_{jk}\Omega_{kk}$$

2D DIRAC SPECTRA ON SPHERE

Exact is integer spacing for j = 1/2, 3/2, 5/2 ...Exact degeneracy 2j + 1: No zero mode in chiral limit!.

QUANTUM COUNTERTERMS

TEST 2D ISING/PHI 4TH ON THE RIEMANN SPHERE

projection
$$\xi = \tan(\theta/2)e^{-i\phi} = \frac{x+iy}{1+z}$$

Conformal Projection + Weyl Rescaling to the Sphere

EXACT SOLUTION TO C = 1/2 CFT

Exact Two point function

$$\langle \phi(x_1)\phi(x_2)\rangle = \frac{1}{|x_1 - x_2|^{2\Delta}} \to \frac{1}{|1 - \cos\theta_{12}|^{\Delta}}$$

$$\Delta = \eta/2 = 1/8$$

$$x^2 + y^2 + z^2 = 1$$

4 pt function

$$(x_1, x_2, x_3, x_4) = (0, z, 1, \infty)$$

$$g(0, z, 1, \infty) = \frac{1}{2|z|^{1/4}|1 - z|^{1/4}} [|1 + \sqrt{1 - z}| + |1 - \sqrt{1 - z}|]$$

Critical Binder Cumulant
$$U_B^* = 1 - \frac{\langle M^4 \rangle}{3\langle M^2 \rangle \langle M^2 \rangle} = 0.567336$$

Dual to Free Fermion

BINDER CUMULANT NEVER CONVERGES

UV DIVERGENCE BREAKS ROTATIONS

$$\delta m^2 = \lambda \langle \phi(x)\phi(x)\rangle \to \frac{1}{K_{xx}}$$

ONE LOOP COUNTERTERM

$$\Delta m_i^2 = 6\lambda \left[K^{-1} \right]_{ii} \simeq \frac{\sqrt{3}}{8\pi} \lambda \log(1/m_0^2 a_i^2) = \frac{\sqrt{3}}{8\pi} \lambda \log(N_s) + \frac{\sqrt{3}}{8\pi} \lambda \log(a^2/a_i^2)$$

$$\delta\mu_i^2 = -6\lambda([K^{-1}]_{ii} - \frac{1}{N_s} \sum_{j=1}^{N_s} [K^{-1}]_{jj})$$

MODEL OF COUNTERTERM

NOW BINDER CUMULANT CONVERGES

$$U_{2n}(\mu^2, \lambda, s) = U_{2n,cr} + a_{2n}(\lambda)[\mu^2 - \mu_{cr}^2]s^{1/\nu} + b_{2n}(\lambda)s^{-\omega}$$

FIT:

$$U_4 = 0.85081(10)$$

EXACT:

$$U_4^{exact} = 0.851021(5)$$

HIGHER MOMENT 2n = 4,6,8,10,12

$$U_6 = 0.77280(13)$$

$$U_4 = \frac{3}{2} \left[1 - \frac{\langle M^4 \rangle}{3\langle M^2 \rangle \langle M^2 \rangle}\right]$$

$$\mu_{cr}^2 = 1.82240070(34)$$

Simultaneous fit for s up 800: E.G. 6,400,002 Sites on Sphere

$$dof = 1701$$
 , $\chi^2/dof = 1.026$

$$\int_{-1}^{1} dz \left(\frac{2}{1-z}\right)^{1/8} P_l(z)$$

$$\Delta_{\sigma} = \eta/2 = 1/8 \simeq 0.128$$

$$\implies \frac{16}{7}, \frac{16}{35}, \frac{48}{161}, \frac{816}{3565}, \frac{12240}{64883}, \frac{493680}{3049501}, \frac{33456}{234577}, \frac{55760}{435643}, \frac{3602096}{30930653}, \frac{20129360}{187963199}, \frac{541373840}{5450932771} \cdots$$

Very fast cluster algorithm:

Brower, Tamayo 'Embedded Dynamics for phi 4th Theory' PRL 1989. Wolff single cluster + plus Improved Estimators etc

EXACT FOUR POINT FUNCTION

OPE Expansion: $\phi \times \phi = \mathbf{1} + \phi^2$ or $\sigma \times \sigma = \mathbf{1} + \epsilon$

$$g(u,v) = \frac{\langle \phi_1 \phi_2 \phi_3 \phi_4 \rangle}{\langle \phi_1 \phi_3 \rangle \langle \phi_2 \phi_4 \rangle}$$

$$= \frac{1}{\sqrt{2}|z|^{1/4}|1-z|^{1/4}} [|1+\sqrt{1-z}|+|1-\sqrt{1-z}|]$$

Crossing Sym:
$$|1 + \sqrt{1-z}| + |1 - \sqrt{1-z}| = \sqrt{2 + 2\sqrt{(1-z)(1-\bar{z})} + 2\sqrt{z\bar{z}}}$$

$$u = \frac{r_{12}^2 r_{34}^2}{r_{13}^2 x_{24}^2} \quad , \quad v = \frac{r_{14}^2 r_{32}^2}{r_{13}^2 r_{24}^2} \qquad \text{where} \quad r_{ij}^2 = (\vec{r}_i - \vec{r}_j)^2 = 2(1 - \cos \theta_{ij})$$

$$u = z\bar{z} \quad , \quad v = (1 - z)(1 - \bar{z})$$

2 TO 2 SCATTERING DATA

ZERO PARAMETER FIT

s= 10 Run for 1/2 hour

$$g(u, v) = \sum_{l} g_l(|z|) \cos(l\theta)$$

$$z = |z|e^{il\theta}$$

FUTURE

COUNTERTERM IN 3D

LESSON: QFE NEEDS COUNTERTERMS

APPROACHES

- (i) Explicitly Subtract Finite Terms for Super Renormalized Theories
- (ii) Pauli-Villars* 1949 (or Feynman and Stuekelberg)

$$\frac{1}{p^2} - \frac{1}{p^2 + M_{PV}^2} = \frac{1}{p^2 + p^4/M_{PV}^2} \qquad 1/\xi \ll M_{PV} \ll \pi/a$$

- (iii) Working on smooth methods for D = 4 & Non-Abelian GaugeTheory
- (iv) Would prefer not to have to use Quenched Randomize Simplicial Lattices but it may also work?

Bootstrapping 3D Fermions

Luca Iliesiu^a, Filip Kos^b, David Poland^b, 1508.00012v1.

$$\mathcal{L} = -\frac{1}{2} \sum_{i=1}^{N} \bar{\psi}_i (\gamma^{\mu} \partial_{\mu} + g\phi) \psi_i - \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \lambda \phi^4$$

Gross Neuve (-Yukawa)

$$\mathcal{L} = -\frac{1}{2}\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{g}{2}\phi\bar{\psi}\psi - \frac{1}{8}\left(g\phi^{2} + h\right)^{2}$$

600 CELL ON S3 https://en.wikipedia.org/wiki/600-cell

16 vertices of the form: [3] ($\pm \frac{1}{2}$, $\pm \frac{1}{2}$, $\pm \frac{1}{2}$, $\pm \frac{1}{2}$),

8 vertices obtained from (0, 0, 0, ±1) by permuting coordinates.

96 vertices are obtained by taking even permutations of $\frac{1}{2}$ ($\pm \varphi$, ± 1 , $\pm 1/\varphi$, 0).

https://en.wikipedia.org/wiki/List of regular polytopes and compounds#Five-dimensional regular polytopes and higher

QFE PLANS

COMPUTATION:

- 2+1 Radial Phi 4th/3D Ising CFT (with cluster algorithm)
- Extend Peter Boyle's GRID to HMC on Simplicial Spheres (Interesting 3D Problem for Dirac/Scalar Theories.)
- 3 Sphere starting with 600 cell: 4 Sphere?

• THEORY:

- Prove QFE for super renormalizable theories
- Renormalization of 4d non-Abelian FT

$$\int_{\sigma} d\omega = \int_{\partial \sigma} \omega$$

Clarity DEC for Quantum FT

Using Binder Cumulants

$$U_{4} = \frac{3}{2} \left(1 - \frac{m_{4}}{3 m_{2}^{2}} \right) \qquad m_{n} = \langle \phi^{n} \rangle$$

$$U_{6} = \frac{15}{8} \left(1 + \frac{m_{6}}{30 m_{2}^{3}} - \frac{m_{4}}{2 m_{2}^{2}} \right)$$

$$U_{8} = \frac{315}{136} \left(1 - \frac{m_{8}}{630 m_{2}^{4}} + \frac{2 m_{6}}{45 m_{2}^{3}} + \frac{m_{4}^{2}}{18 m_{2}^{4}} - \frac{2 m_{4}}{3 m_{2}^{2}} \right)$$

$$U_{10} = \frac{2835}{992} \left(1 + \frac{m_{10}}{22680 m_{2}^{5}} - \frac{m_{8}}{504 m_{2}^{4}} - \frac{m_{6} m_{4}}{108 m_{2}^{5}} + \frac{m_{6}}{18 m_{2}^{3}} + \frac{5 m_{4}^{2}}{36 m_{2}^{4}} - \frac{5 m_{4}}{6 m_{2}^{2}} \right)$$

$$U_{12} = \frac{155925}{44224} \left(1 - \frac{m_{12}}{1247400 m_{2}^{6}} + \frac{m_{10}}{18900 m_{2}^{5}} + \frac{m_{8} m_{4}}{2520 m_{2}^{6}} - \frac{m_{8}}{420 m_{2}^{4}} + \frac{m_{6}^{2}}{2700 m_{2}^{6}} - \frac{m_{6} m_{4}}{45 m_{2}^{5}} + \frac{m_{6}}{15 m_{2}^{3}} - \frac{m_{4}^{3}}{108 m_{2}^{6}} + \frac{m_{4}^{2}}{4 m_{2}^{4}} - \frac{m_{4}}{m_{2}^{2}} \right)$$

- U_{2n,cr} are universal quantities.
- Deng and Blöte (2003): U_{4,cr}=0.851001
- Higher critical cumulants computable using conformal 2n-point functions: Luther and Peschel (1975)
 Dotsenko and Fateev (1984)

In infinite volume $U_{2n}=0$ in disordered phase $U_{2n}=1$ in ordered phase $0<U_{2n}<1$ on critical surface

LINEAR FINITE ELEMENT APPROACH

$$S = \frac{1}{2} \int_{\mathcal{M}} d^D x \sqrt{g} \left[g^{\mu\nu} \partial_{\mu} \phi(x) \partial_{\nu} \phi(x) + m^2 \phi^2(x) + \lambda \phi^4(x) \right]$$

$$I_{\sigma} = \frac{1}{2} \int_{\sigma} d^{D}y [\vec{\nabla}\phi(y) \cdot \vec{\nabla}\phi(y) + m^{2}\phi^{2}(y) + \lambda\phi^{4}(y)]$$

$$= \frac{1}{2} \int_{\sigma} d^{D}\xi \sqrt{g} \left[g^{ij}\partial_{i}\phi(\xi)\partial_{j}\phi^{2}(\xi) + m^{2}\phi^{2}(\xi) + \lambda\phi^{4}(\xi) \right]$$

$$I_{\sigma} \simeq \sqrt{g_0} \left[g_0^{ij} \frac{(\phi_i - \phi_0)(\phi_j - \phi_0)}{l_{i0} l_{j0}} + m^2 \phi_0^2 + \lambda \phi_0^4 \right]$$